Non-vital pulp therapy in pediatric dentistry

PULPECTOMY

Dr. Shanmugavadivel, Professor Department of Pedodontics and preventive dentistry

CONTENTS

Definition

- Introduction- Importance and its goal
- Rationale & objectives
- Indications & Contraindications-AAPD
- Primary teeth vs Permanent teeth ????- Uniqueness of

primary teeth

- Treatment considerations
- Endodontic triad
- ✤ Acess cavity preparation
- Exploration
- ✤ Extripation of pulp
- WL determination
- Cleaning and shaping-Endodontic instuments

Rotary endodontics in pediatric dentistry

Root canal irrigants

- Obturation Materials used for obturation
- Obturation techniques

□ Types of pulpectomy- single visit, multi-visit, laser

- Success criteria for pulpectomy
- Pulpectomy –a controversy
- Limitations
- Complications
- **Conclusion**

References

DEFINITION

AAPD -2014

Pulpectomy is a root canal procedure for pulp tissue that is irreversibly infected or necrotic due to caries or trauma. The root canals are debrided and shaped with hand or rotary files.

<u>Dannenburg</u>

....the extirpation of the vital pulp, normal or abnormal followed by sterilization and filling of the root canal.

INTRODUCTION

Importance of Pulp Therapy in Pediatric Dentistry

- Mesial drift
- Absence of a succedaneous tooth.
- Maintain normal eruption time of the succedaneous teeth.

Primary Goal

To eliminate infection and retain the tooth in a functional state ^Foliated,

without endange health of the (

Successful treatr retain it in a h as a useful cor permanent de

Dan

dentition or the

ved tooth is to may fulfill its role nd young

Rationale

To gain access To remove as much as dead Non-infected

Treatment

Objectives

Tooth free of infection

Biomechanically cleanse & obturate root canals

Promote physiologic root resorption

Hold space for the erupting perm tooth

Indications - AAPD 2014

A pulpectomy is indicated in a primary tooth with irreversible pulpitis or necrosis or a tooth treatment planned for pulpotomy in which the radicular pulp exhibits clinical signs of irreversible pulpitis

The roots should exhibit minimal or no resorption.

Major Indications

Primary teeth with pulpal inflammation extending beyond the coronal pulp but with roots and alveolar bone free of pathologic resorption

Primary teeth with necrotic pulps, minimum root resorption, and minimum bony destruction

in bifurcation area

• Presence of an abscess

Other Indications

Teeth with poor chance of vital pulp treatment
Strategic importance for space maintenance
Absence of surrounding bone loss from infection
Pulpless primary teeth
with sinus tracts

- without permanent successors
- in hemophiliacs

ГI.

лI

ГЦ.

лI

- next to the line of a palatal cleft
- anterior teeth when speech, crowded arches, or esthetics are a factor
- when space maintainers or continued supervision are not feasible (handicapped or isolated children)
- Pulpless primary molars
- supporting orthodontic appliances
- when arch length is deficient
- second molars before eruption of perm first molar
- Cooperative patient
- Expectation of restorability

Major Contraindications...

Unrestorable crown (Root stumps)

Advanced pathological root resorption

Other Contraindications

- Peri-radicular involvement extending to the permanent tooth bud
- Pathologic resorption of more than1/3rd of root with a fistulous sinus tract
- Excessive internal resorption
- Extensive pulp floor opening into bifurcation
- Primary teeth with underlying dentigerous or follicular cysts

Medical contraindications

Heart disease

Medical contraindications

Systemic illness like hepatitis & children on long-term corticosteroid therapy

Immunocompromised children

OVER ALL

INDICATIONS

Strategically important tooth (e.g; in case of the deciduous second molar where the permanent first molar has not erupted)

Irreversible pulpitis.

Minimal periapical changes with sufficient bone support.

At least 2/3 rd of the root length available.

Internal resorption without any obvious perforation.

CONTRAINDICATIONS

Systemic conditions

ELack of patient cooperation

EExcessive mobility

Non-restorable tooth

Pathological resorption of > 1/3 root

Primary teeth vs Permanent teeth ????

Uniqueness of primary teeth

Finn; Nelson & Ash

Treatment considerations

- Complexity of the root canal system:
 - numerous lateral canals,
 - accessory canals,

 \Box

- areas of internal resorption,
- communication with furcation,
- variations in shape of canal at their apical terminus and
- increase in incidence of lateral and accessory canals with the onset of root resorption
- Ongoing resorption
- Inability to determine anatomical apex
- Restorability of the tooth subsequent to treatment:
 - adequate tooth structure should remain
 - Periodontal tissue health:
 - periodontal tissues -- sound or amenable to treatment
 - no excessive mobility of the tooth
 - fistula of periodontal origin -- poor prognosis

- Anatomy of the mouth and specific tooth to be treated:
 - size of mouth and tongue,
 - angulation and alignment of teeth
- Systemic condition of the child patient:
 - Pre-treatment & post treatment antibiotic coverage is required for the rheumatic heart disease patient
- Radiographic interpretation
 - extent of the carious lesion,
 - status of the lamina dura,
 - presence of abnormal resorptive processes /radicular rarefactions
- Manageability of pedodontic patient:

Evaluation of Treatment Prognosis before Pulp

Therapy

- Tooth favorable to therapy
- Extraction & space management
- Pt. & parent cooperation
- Maintenance of oral health & hygiene

ENDODONTIC CAVITY PREPARATION

OBTURATION

CLEANING & SHAPING

ACCESS

Working length determination

ENDODONTIC TRIAD

Access Cavity Preparation

Key that opens the door "to search a black cat in a dark room"

Access cavity preparation

- Access cavity preparation generally refers to the part of the cavity from the occlusion table to the canal orifice (Stephen Cohen).
- Objectives:
 - To achieve a straight or direct line access to the apical foramen.
 - To locate all root canal orifice.
 - **To conserve sound tooth structure.**

Guidelines

- Visualization of internal anatomy
- Evaluation of CEJ and occlusal anatomy.
- Preparation of the access cavity is through lingual in anterior teeth and on the posterior teeth through occlusal surface.
- Removal of unsupported tooth structure.
- Creation of access cavity walls.

Imp diff b/w prim and perm teeth

- Length and shape of crowns
- Dentinal wall at pulpal floor and
- Depth , distance from occlusal surface

ARMAMENTARIUM

Figs 8 a-b (a) left to right, #2 round diamond bur, tungsten carbide fissure bur, Endo Z bur, Axxcess bur and #2 tungsten carbide round bur, the last two burs (SybronEndo, Orange, CA, USA) have a longer shank and allow better vision when used with magnification. (b) Close up of the non-end cutting Endo-Z bur (Dentsply Maillefer Instruments, Ballaigues, Switzerland)

Tapering fissure bur with a round head \rightarrow (Fig. 4) ii.

Fig. 3 Round bur

Safe end burs e.g.: Endo Z bur → (Fig. 5) iii. Fig. 5 Endo Z – Safe end cutting bur Fig. 4 Tapering fissure bur with a round head **Orifice Enlargers** с. X Gates 🔶 (Fig. 13) i. Fig. 13 X gates

Figs 9 a-d (a, b) The roof of the pulp chamber has been penetrated using a tungsten carbide bur; (c) an 'Endo-Z' bur has been used to completely remove the roof of the pulp chamber. (d) All canals readily identifiable

Exploration of the canal orifice

Curved path finder file
Explore the walls
Length or direction
Canal exploration
Curvature of canal

b. DG – 16 Endodontic Explorer → (Fig. 7)

Fig. 7 DG 16

c. Endodontic Spoon excavator → (Fig. 8)

Explorer: No. 23-16 DG 16

Explorer: CK 17

Micro opener & Debrider

Micro opener

✤7 mm K type flutes﴾# 10, 15, 0.04, 0.06 tapers

Micro debrider
Hedstrom cutting configuration
02 taper, sizes #20, 30
16mm cutting flutes
For hard-to-reach, hard-to-visualize canals

Endodontic Micro Openers (Dentsply Maillefer)
→ (Fig. 14)

Fig. 14 Micro opener
Pulp extirpation

- Broach are used- Stephen wei, Pinkham, Nikhil Marwah
- Broach is preferred- should never engage dentinal walls -Braham morris
- Barbed broach contraindicated Kennedy
- H files indicated and Reamers are contraindicated Kennedy, Mcdonald
- Endodontic files indicated- Mathewson

STUDIES	
AUTHOR	DESCRIPTION
Healey	Broach – worked progressively to remove pulp 1 st from coronal, then middle, and apical 1/3 rd
Weine	In narrow canals – enlarge to #20 file size then use broach

Because of the bizzare anatomy of primary molar root canals the use of barbed broaches as in conventional endodontics may be unsuccessful

Hedstrom files are recommended since they remove hard tissue only on withdrawal, which prevents pushing infected through the apices. Working Length Determination

Working length

Ingle - the distance from a coronal reference point to the point at which canal preparation and obturation should terminate.

Significance

Importance

- Apical perforation
- Over filling / under filling
- Incomplete instrumentation
- Ledge formation

If calculated properly -- success of treatment If calculated incorrectly-- treatment failure

Requirements

The requirements of an ideal method

- rapid location of the apical constriction
- easy measurement
- rapid periodic monitoring and confirmation
- patient and clinician comfort
- minimal radiation to the patient
- ease of use in special patients such as those with severe gag reflex, reduced mouth opening, pregnancy etc, and
- Cost effectiveness

Methods of working length determination

RADIOGRAPHIC METHODS Conventional method Ingle method Grossman method Digital radiography •Xeroradiography Radiovisiography Tomography

NON RADIOGRAPHIC METHODS •Tactile sense •Paper point •Apical PDL sensitivity •APEX LOCATORS

OTHER RADIOGRAPHIC METHODS

Best's method

Bregman's method

Bramante's method

Grossman's method

Ingle's method

Torabinejad's method

X ray grid system

Xero radiography

Direct digital radiography

Conventional radiography – Ingle's method

Weine's modification

Grossman method

- actual length of tooth is determined by mathematical formula
- Actual length of tooth =

 <u>actual length of the instrument X x-ray length of tooth</u>
 x ray length of instrument

	Table. Root canal length of maxillary incisors and mandibular molars		
	Length in mm		
		Mean	Range
	Tooth		
	Central	16.5	16-17
 In 1992, Salama et al 	Lateral	15	14-16
attempted to determine the	Tooth and		
unempieu to ueter mine the	Canal		
length of the root canals of	First molar		
	Mesiobuccal	16.4	15-17
primary maxillary incisors	Mesiolingual	14.2	9-15
and mandibular molars	Distobuccal	13.1	12-15
	Distolingual	12.7	10-15
	Second molar		
	Mesiobuccal	15.8	13-17

14.4

14.9

14.9

Mesiolingual

Distobuccal

Distolingual

11-16

13-16

12-16

STUDIES

AUTHOR	DESCRIPTION
Shearer 1990, Griffith 1999, Hedrick 1994	No statistically significant difference in working length estimation accuracy between conventional film, direct digital radiography, and xeroradiography.
Seidberg 1975 Bal CS 1989 Stabholz 1995	TACTILE SENSE: 68% accuracy If canals are preflared 75% accuracy If not preflared 33% accuracy Ineffective in open apex root, excessive curvature, constricted canals.
Neena IE et al 2011	Apex locator is comparable to conventional radiograph in determining the working length without radiation in the primary teeth. Intraoral digital radiography is the safest method in determining the working length with significant reduction in radiation exposure

2

STUDIES

AUTHOR	DESCRIPTION
Ahsan Abdullah et al IJCPD 2016	Radiovisiography and apex locators are equally effective in determining working length in primary teeth.
Priya Mittal et al J Dent Specialities.2016	 Group I - radiographic measurement using paralleling technique, Group II - electronic working length measurement using Raypex 6 apex locator, Group III - tactile working length, Group IV - paper point working length and Group V - combination of apex locator, tactile and paper point techniques. Combined electronic, tactile and paper point working length (CETPPWL) method showed 99.5% of accuracy Hence Combination of use of apex locator, tactile and paper point method is recommended.

Cleaning and shaping

Objective of cleaning and shaping

Biological objective:

Minimize bacterial count and necrotic material in root canal

Technical objective:

- Continuously tapering funnel
- The root canal preparation should maintain the path of the original canal
- The apical foramen should remain in its original position
- The apical opening should be kept as small as practical

Principles

- Direct straight line access
- Length accurately determined
- Sequential hand instrumentation with periodic recapitulation
- Instrumentation with quarter to half turn and withdrawn with pull stroke
- Barbed broaches with caution
- Rubber stops
- Apex –enlarged three times the size of the first binding instrument
- Instrumentation in wet canal
- Debris not forced to PA area
- Avoid trauma to PA area

Acc to Ingle:-

ISO Gp I: Hand use only.

Eg- k files, H files, broach, pluggers, spreaders, U type files.

ISO Gp II: Engine driven latch type.

Eg-similar in design to Gp I ,but attached to hand piece. paste fillers also included here.

ISO Gp III: Engine driven latch type

Eg-gates glidden, paeso reamer, kurer root facer.

ISO GP IV: Root canal filling instruments.

K-FILES

K-FILES: It is twisting square or triangular metal blanks along their long axis, producing **partly horizontal cutting blades**.

Ni-Ti-K Files: It is especially useful for apical enlargement in **curved canals**.

The application of clockwise and counter clockwise.

Rotational and translational working strokes.

K flex file:

K- flex O file: K- flex R file/ Roane file Triple flex file:

ISO COLOR CODING

Color code	ISO size	$d_{\downarrow} \pm 0.02 \text{ mm}$	$d_{j} \pm 0.02 \text{ mm}$
	006	0.06	0.38
CHID-	008	0.08	0.40
CHILD-	010	0.10	0.42
(FIIID)-	015	0.15	0.47
	020	0.20	0.52
	025	0.25	0.57
SHID-	030	0.30	0.62
(ALL)	035	0.35	0.67
	040	0.40	0.72
GIID	045	0.45	0.77
	050	0.50	0.82
(PIII)-	055	0.55	0.87
	060	0.60	0.92
(HID)-	070	0.70	1.02
()	080	0.80	1.12
(FIII)-	090	0.90	1.22
	100	1.00	1.32
(HIII)	, 110	1.10	1.42
3110-	120	1.20	1.52
AND	130	1.30	1.62
Chilling	140	1.40	1.72

Pink Gray Purple White Yellow Red Blue Green Black White

Stop Attachments

7.0

FIGURE 3-1 Sure-Stop silicone endodontic stop dispenser. (Courtesy Dentsply Maillefer, Tulsa, OK.)

K – Type Reamers & Files (Ansi 28)

- Reaming: penetration, rotation (¼- ½) and retraction.
- They are more efficient in removing tooth structure than files (2.5 times more) because of triangular cross section.

MANI

25mm #15~4

Pathfinder

- Narrower taper
- Used to negotiate calcified, constricted canals
- ProFinder: variable minimal taper, #10,13,17, lengths: 18, 21, 25 mm

Hedstrom Files (ANSI 58)

Milled instrument- multiaxial grinding

Positive rake angle

Cuts in pull motion

Retraction

Safety Hedstrom File

In primary teeth.....

- K files & H files are widely used in primary tooth.
- Crown down preparation
- Canals enlarged to size 35 or 40
- Apical preparation
- Cleaning the canals—utmost important as against shaping
- Shaping done on canal walls away from furcation
- Zipping & perforation common-- resorption
- Rotary instruments may be used for better results

Rotary endodontics in pediatric dentistry

Rotary endodontics in primary teeth – A review ;Sageena George et al 2016

Mechanical preparation of primary teeth utilizing Ni–Ti rotary files was first done by Barr et al. (2000)

Ni–Ti PROFILE(Barr et al., 1999, 2000).

PROFLE 0.04 taper 29 series (Shashikiran, 2006).

K3 Rotary System (Elmsallati et al.,2006).

Mtwo rotary system(Kuzekanani et al., 2009; Malagino et al., 2012;)

Flex-Master system (Makarem et al., 2014)

Hero 642 system (Schafer, 2001)

Pro Taper Next has recently been introduced which consists of five files (X1–X5). (Dhingra et al., 2014; Rahman et al.,2014).

Wave-One and Reciproc brands of Ni–Ti instruments adopted the single file system and advocated the reciprocation concept. These files are made of a special Ni–Ti alloy calledM-wire(Lim et al., 2013; Plotino et al., 2012).

NiTi systems in primary teeth....????

Barr ES et al (2000)

More effective in debriding uneven walls

Provide consistently uniform , predictable fill

Advantages

Tissue and debris more easily & quickly removed
Niti files flexible, allowing easy access
Prepared canals – funnel shaped – predictable uniform paste fill

Disadvantages

Cost of handpiece
Increased cost of NT
Learning the technique

STUDIES

AUTHOR	DESCRIPTION
Iqbal musani et al IJCPD 2009	Evaluated the biological cleaning efficacy by <u>microbial quantification</u> using two files K-files and hand protapers Increase success rate with protapers.
Sérgio Luiz Pinheiro et al 2012	Analysis of the <u>instrumentation time</u> between manual and rotary techniques in deciduous molars ProTaper system revealed shorter treatment time compared to the other techniques, thus being indicated for deciduous teeth
Mohammad Reza Azar et al DRJ 2012	Comparison of the <u>cleaning capacity</u> of Mtwo and ProTaper rotary systems and manual instruments in primary teeth Manual K-files were similarly effective in all three parts of the canal, as were Mtwo rotary files.

AUTHOR	DESCRIPTION
Farhin Katge et al JISPPD 2014	Comparison of instrumentation time and cleaning efficacy of manual instrumentation, rotary systems and reciprocating systems in primary teeth: An in vitro study WaveOne's cleaning ability was the best amongst the three file systems. instrumentation time: WaveOne (reciprocating system) took less time than the other two file systems
Bibhas Dey et al 2016 IJOHMR	A Comparison of Ni-Ti Rotary and Hand Files Instrumentation in Primary Teeth – A Review Article Rotary root canal instrumentation would make the treatment time for root canal preparation shorter hence increasing its benefits for utilisation in deciduous teeth
Haridoss SelvaKumar et al 2016 JCDR	Computed Tomographic Evaluation of K3 Rotary and Stainless Steel K File Instrumentation in Primary Teeth K3 files (.02 taper) generated less dentine removal than the stainless steel K file and K3 files (.04 taper). K3 rotary files were more effective for root canal instrumentation in primary teeth.

To be continued.....

- Root canal irrigants
- Obturation Materials used for obturation
- Obturation techniques

Types of pulpectomy- single visit, multi-visit, laser

Success criteria for pulpectomy

Pulpectomy –a controversy

Limitations

Complications

Conclusion

References

Thank You

Good Morning

Non-vital pulp therapy in pediatric dentistry

CONTENTS

- Root canal irrigants
- Obturation Materials used for obturation
- Obturation techniques
- □ Types of pulpectomy- single visit, multi-visit, laser
- Success criteria for pulpectomy
- Pulpectomy –a controversy
- Limitations
- Complications
- **Conclusion**

References

Grossman method

actual length of tooth is determined by mathematical formula

Actual length of tooth = <u>actual length of the instrument X x-ray length of tooth</u> x ray length of instrument

Grossman method

Actual length of tooth =

actual length of the instrument X apparent length of tooth in radiograph

apparent length of instrument in radiograph

Root canal Irrigants & Medicaments

Man does not live by bread alone Root canals are not cleaned by instruments alone but with important adjuncts like irrigants

Biological Preparation - Irrigation

Marsh and Largent (1967) – Irrigation serves as a physical flush to remove debris, pulp tissue, microorganisms as well as serving as a bactericidal agent, tissue solvent and lubricant

AUTHOR	DESCRIPTION
Kopel	Debridement in primary teeth- more dependant on chemical than mechanical means
Braham Morris	Prim molars –hourglass in shape Instrumtn + irrigation

Ideal Properties

- Walton & Torabinejad 1989
 - Tissue solvent
 - Low toxicity
 - Low surface tension
 - Lubricant property
 - Sterilization
 - Flushing action
 - Removal of smear layer
 - Availability
 - Cost effective

Ideal Requirements of Root Canal Irrigants

Irrigating Solutions in Pediatric Dentistry: Literature Review and Update Rajwinder Kaur et al 2014

Ideal Requirements of Root Canal Irrigants

1. Broad antimicrobial spectrum

2. High efficacy against anaerobic and facultative microorganisms organized in biofilms.

- 3. Ability to dissolve necrotic pulp tissue remnants
- 4. Ability to inactivate endotoxin
- 5. Ability to prevent the formation of a smear layer during instrumentation
- 6. Systemically nontoxic.

ENDODONTIC IRRIGANTS

NATURAL AGENTS

ANTIBACTERIAL AGENT

(eg; green tea ,triphala,Propolis)

J Conserv Dent. 2010 Oct-Dec; 13(4): 256–264 Fernanda Miori Pascon et al, Influence of cleansers and irrigation methods on primary and permanent root dentin permeability: a literature review. Braz J Oral Sci. July-September 2006 - Vol. 5 - Number 18

Category	Agents		Ingredients	Major Advantages(s)	
Antiseptic	Sod Hypod	ium hlorite	0.5-5.25% available chlorine	Tissue dissolution and antimicrobial	
and/or Disinfectant	Chlorhexidi	ne Gluconate	0.1-2.0% Chlorhexidine Gluconate	Antimicrobial	
	Hydrogen Peroxide		3% Hydrogen Peroxide	Effervescence with NaOCI (beneficial effect in the canal questionable)	
Oxidizing agents	Urea	Endo-PTC	10% Urea Peroxide, 15% Tween 80 and 75% Carbowax	Good wetting ability, excellent lubricant	
	Peroxide	Gly-Oxide	10% Carbamide peroxide in glycerol		
	EDTA		10–17% recommended	Softens dentine and removes (partially) smear layer	
Chelating agent	EDTAC		EDTA with Cetrimide/Cetavlon	Good wetting ability for EDTAC preparations	
	RC	-Prep	EDTA and Urea Peroxide in a base of carbowax	Excellent lubricant	
	Citri	c acid	10-50% recommended	Removes smear layer	
Organic Acid	Polyac	rylic acid	5-20% recommended		
	Tanr	nic acid	25% solution		

Other Different irrigants

Root canal irrigants in primary teeth Jaya agali Ramachandra et al World jnl of dentistry 2015

NaoCI-0.5%-5.25% CHX -.0.2% & 2% EDTA -17% Citric acid -6% Mixture of Doxycycline, citric acid and a detergent Tetraclean(acid+antibiotic+detergent) Carisolv Electrochemically activated solutions Ozonated water Herbal irrigants Miswak Morinda citrifolia Triphala and Green tea phenols German chemomile and Tea tree oils Propolis

Irrigating Solutions in Pediatric Dentistry: Literature Review and Update Rajwinder Kaur et al 2014

> Hydrogen peroxide Maleic acid 7% Chlorine dioxide Smearclear-(17%EDTA solution along with centrimide and additional proprietary surfactants.)

			NaOCI
Pashely et al 1985		It is found that 5.25% NaOCI has a g effects than with 0.5% and 1% solut	reater cytotoxicity and coastic
	s S	wallowed unintentionally-	
Berber et al 2006 (0.5%, 2.5% and 5.25	p	haryngeal oedema & oeaphageal ourns	anals and for all techniques the most effective irrigant
	s P	ushed beyond apex	DCI
	s T	aste	
JEFFERSON J.C MARI et al		ritant	Ition than and others because it and 1% con centration and has
2012	n C	Damage to clothes	itration .

	СНХ
White <i>et al</i> CHX + NaOCI	substantivity of CHX tissue dissolving action of NaOCl
Dametto <i>et al.</i> 2005	2% chlorhexidine gluconate (gel and liquid) antimicrobial ability more effective than 5.25% NaOCl in preventing regrowth of <i>E. faeco</i>
Oncag et al (JCPD 2006)	In vivo eff Ca(O 1% C 1% C 1% C CHX with / without Ca(OH) ₂ more effective than Ca(OH) ₂ alone

	EDTA
Hariharan et al 2010	With the use of EDTA in primary teeth, he observed minimal erosion in peritubular dentin .This is due to higher volume of EDTA.
Navid K et al 2014	17% EDTA application for one min proved no signs of dentin erosion

Irrigation with distilled water or saline (Walker and del Rio, 1991).	Is effective in eliminating loose debris from upper and middle thirds of canal but has mild effect on smear layer
Hariharan et al JISPPD 2010	Saline group Sodium hypochlorite group NaOCl + EDTA Citric acid CHX The study concluded that superior efficacy of 6%citric acid in removal of smear layer than any other tested irrigants in primary root canals.

Saline

TABLE 1. Overview on the features of aqueous irrigants frequently recommended for endodontic use

Compound (recommended concentration)	Туре	Action on Endodontic Taxa Biofilm	Tissue Dissolution Capacity	Endotoxin Inactivation	Action on Smear Layer	Caustic Potential	Allergic Potential
Hydrogen peroxide (3%-30%)	Peroxygen	+	\frown	-	-	D. o. c.	-
Sodium hypochlorite (1%–5.25%)	Halogen-releasing agent	++	+++	+	++ on organic compounds	D. o. c.	+
lodine potassium iodide (2%–5%)	Halogen-releasing agent	++		N. i. a.	_	-	++
Chlorhexidine (0.2%–2%)	Bisguanide	++	-	+	-	D. o. c.	+
Dequalinium acetate (0.5%)	Quaternary ammonium compound	N. i. a.	-	N. i. a.	+	-	++
Ethylenediamine tetraacetic acid (10%–17%)	Polyprotic acid	+	-	-	++ on inorg. compounds	-	-
Citric acid (10%–50%)	Organic acid	-	-	-	+++ on inorg. compounds	-	-

-: absent or minor, +: reported, ++: definitely present, +++: strong, D. o. c.: depending on concentration, N. i. a: no information available.

Study	Initial sample	Irrigant agent	Final sample	Evaluation period	Success of treatment	Failure of treatment	Mean	SD	Response variable	Results	Conclusion
Ruiz-Esparza et al. ³² JCPD 2011	20 20 20 20	Saline solution 2% Chlorhexidine gluconate	20 20 20 20	Pre-irrigation Post-irrigation Pre-irrigation Post-irrigation	ND	ND	1.68×10 ⁹ 1.06×10 ⁹ 1.5×10 ⁹ 1.5×10 ⁶	$\begin{array}{r} 4.7 \times 10^{7} \\ 4.6 \times 10^{7} \\ 5.2 \times 10^{7} \\ 4.6 \times 10^{6} \end{array}$	Colony- forming units (CFU/mL)	Statistically significant difference was observed in favour of the experimental group	Chlorhexidine gluconate showed greater reduction of intracanal bacterial loading
Louwakul&Pruck- satha-mrongkul ³³ PD 2012	32 32	Saline solution 2% Chlorhexidine gluconate	30 30 30 31 31 31	6 months 12 months 18 months 6 months 12 months 18 months	25 28 29 31 30 28	5 2 1 0 1 2	ND	ND	Success and failure, radiographic and clinical criteria	At 6 months in favour of experimental group and no difference at 12 or 18 months	Chlorhexidine 2% could improve the results 6 months after intervention
Valdez- González, <i>et al.</i> ³⁴ PD 2012	20 20 20 20	NaOCI 1% OPW	20 20 20 20	Pre-irrigation Post-irrigation Pre-irrigation Post-irrigation	ND	ND	1.56×10 ⁹ 0 1.63×10 ⁹ 5×10 ⁷	3.36×10 ⁸ 0 4.18×10 ⁸ 1.53×10 ⁸	CFU/mL	Significant difference in favour of the experimental group when evaluated pre- and post-irrigation	OPW was as effective as NaOCI
Study	Initial sample	Irrigant agent	Final sample	Evaluation period	Success of treatment	Failure of treatment	Mean	SD	Response variable	Results	Conclusion
Jolly et al. ³⁵	15	Saline solution	15	Pre-irrigation Post-irrigation	ND	ND	Aerobes (7.13) Anaerobes (7.4) Aerobes (3.8) Anaerobes (6.40)	1.19 1.24 1.08 0.91	CFU/mL	In all groups, a significant decrease in mean aerobic CFU was	Chlorhexidine proved to be a superior antimicrobial agent
2013	15	Chlorhexidine gluconate 2%	15	Pre-irrigation Post-irrigation			Aerobes (7.13) Anaerobes (7.2) Aerobes (3.8) Anaerobes (3.73)	1.19 1.26 1.08 0.88		observed; maximal change in anaerobic CFU count was	against both endodontic aerobes and anaerobes
	15	Calcium hydroxide 4%	15	Pre-irrigation Post-irrigation			Aerobes (7.13) Anaerobes (7.13) Aerobes (5.73) Anaerobes (5.27)	1.19 1.19 1.49 1.16		observed with 2% chlorhexidine	
	15	Propolis extract 4%	15	Pre-irrigation Post-irrigation			(5.27) Aerobes (6.93) Anaerobes (7.27) Aerobes (3.87) Anaerobes (4.40)	1.58 1.28 1.19 1.12			
Tulsani <i>et al.</i> 7 PD 2014	10 15 15	Isotonic saline solution 0.9% 2.5% NaOCI MTAD (Bio-pure)	10 15 15	Post-irrigation	ND	ND	(4.40) 2.09 0.23 0.19	1.54 0.34 0.40	Relative Quantifying (RQ) increase in gene expression	Statistically significant difference between NaOCI and MTAD against control was found but po	Both irrigants (NaOCI and MTAD) were effective against <i>E. faecalis</i>

found, but no difference was found between the experimental groups

Table 4. Individual results of individual studies.

Study	Initial sample	lrrigant agent	Final sample	Evaluation period	Success of treatment	Failure of treatment	Mean	SD	Response variable	Results	Conclusion
Verma <i>et al.</i> ³⁶ JISPPD 2014	35 35	lsotonic saline solution 0.9% Water- soluble propolis 25%	35 35	Pre-irrigation Post-irrigation	ND	ND	ND	ND	CFU/mL	Greater reduction in bacterial colony counts isolated in the Propolis group compared with the control group	The water–soluble propolis extract 25% can be used as an irrigant
Farhin et al. ³⁷	30 30 30	NaOCI 1% MTAD	30 30 30	Pre-irrigation Post-irrigation Pre-irrigation	ND	ND	111301.7 354.25 105873.5	10.80×10^{3} 18.73×10^{3} 11.82×10^{3}	CFU/mL	Group (NaOCI) showed significant	The results presented in this study
JCPD 2015	30		30	Post-irrigation			183.09	59.14×10 ³		decrease in bacterial load; the same in the MTAD group; when both groups were compared in post-irrigation, MTAD was superior	are very promising in terms of being a viable alternative

Recent advances in irrigants

Parul Singhal, Usha Mohan Das, Deepak	Carislov as an endodontic irrigant in deciduous teeth:An SEM study
Vishwanathan et al 2012	Root canals were flooded with NaOCI solution in Group A, NaOCI gel in Group B and Carisolv [™] in Group C and incubated for 30 min NaOCI solution was better followed by carislov and NaOCI gel
Zeynep Goztas et	Antimicrobial activity was similar for all groups
al 2014 Group I: 25 mg/L of Ozonated water, Group II: 2.5% (NaOCI), Group III: 2% CHX	Due to aqueous ozone that demonstrates no cytotoxicity and high biocompatibly can be used as primary root canal irrigation agent for especially pediatric patient.

Shilpi Gupta et al 2015	Smear layer removal in primary teeth using a novel irrigant, QMix: An in vitro study.
JCMD	QMixTM (2 in 1 solution a mixture of (CHX), (EDTA) and a surfactant cetrimide mixed in distilled water with acceptable additional salt)
	QMixTM is effective as a final irrigation agent for the removal of smear layer in the coronal, middle, and apical thirds of the root canals in deciduous teeth
Sharath Asokan Et al IJCPD 2016	Effect of 95% Ethanol as a Final Irrigant before Root Canal Obturation in Primary Teeth: An in vitro Study Primary root canals dried with 95% ethanol
	showed better obturation than those dried with paper points.

New Technologies to Improve Root Canal Disinfection

Brazilian Dental Journal (2016)

Disposable plastic syringes of 2.5-5ml capacity with 25 gauge blunted needles Sodium Hypochlorite (NaOCI)-To reduce this risk, use of specially designed endodontic needles and a technique of injection without pressure are recommended Specially designed needles Max-I-probe NaviTip Ultrasonic Activation of Sodium Hypochlorite-between 25 and 40 kHz & 30 s to 1 min for each canal with 3 cycles of 10-20 s Agitation techniques: Alternative Antibacterial Systems Manual Agitation Techniques Nanoparticles Machine-Assisted Agitation Systems **Bioactive Glass** Continuous Irrigation during Instrumentation Natural Plant Extracts Sonic Activation lower frequency (1-6 kHz) Apical Negative-Pressure Irrigation(EndoVac) Laser Activation Additional Disinfection Systems Photo-Activated Disinfection (PAD)

Ozone

	A may
Seow et al 1991 PD	Comparison of ultrasonic and mechanical cleaning of primary root canals using a novel radiometric method ultrasonication is a useful adjunct for endodontic cleaning of primary teeth. Due to the high prevalence of accessory canals

Obturation

OBTURATION

DEFINITION

It is the substitution of an filling in the space previously occupied by the pulp tissue, to prevent recurrent infection by way of the circulation (anachoresis) or through a break in the integrity of the crown of the tooth

- Resorbable cements used in primary teeth
- Guttapercha and silver points are contraindicated

Criteria For Ideal Root Canal Filling Material Castagnola et al, Rifkin et al

- Resorbable
- Antiseptic
- Harmless to adjacent tooth germ
- Radio opaque
- Does not set to a hard mass-deflect succedaneous teeth
- Easily inserted
- Easily removed if necessary
- Non inflammatory
- Not discolour tooth

Instruments For Obturation

Endodontic pluggers & spreaders Hand held

Finger held- Ni Ti (HyFlex)

Lengths(L): 25mm

Lentulospirals

- ISO group II
- Must fit loosely
- 3 types
 - Coiled
 - Twisted blades
 - Coiled with safety device

MATERIALS USED FOR OBTURATION

- Zinc oxide eugenol
- Calcium hydroxide
- Iodoform
- Vitapex
- Walkhoff paste
- KRI paste
- Maisto paste
- Mineral trioxide aggregate
- Endoflas

Zinc Oxide Eugenol

- First discovered Bonastre(1837)
- Dentistry-Chisholm(1876)
- Resorbable
- Radioopaque
- Most popularly used
- Composition
 - Powder
 - Zinc oxide 42%
 - Staybelite resin 27%
 - Bismuth carbonate 15%
 - Barium sulphate 15%
 - Sodium borate 1%
 - Liquid
 - Eugenol

DISADVANTAGES

(Kennedy)	Sets into hard mass- deflection of succedaneous teeth
(Erausquin & Muruzbal)	Irritating to periapical tissue
(Allen & Woods)	Necrosis of bone and cementum
	Longer time to resorb than tooth root
(Barker)	Foreign body reaction if overfilled
CASES et al	ZOE treated teeth were retained longer
FUKS 2000 DCNA	diff resorption rates when pushed apically
MORTAZAVI (2004) COLL et al	resulted in deflected permanents

Success rates reported after obturating with Zinc Oxide Eugenol cement by various authors as follows

Gould et al	82.5%,
Coll et al.	86.1%
Holan and Fuks	65%,
Reddy V.V.S. and Fernandes	80%,
Nadkarni and Damle	88.57%
Mortzavi and Mesbahi (2004)	78.5%
Barr et al	82.3%

Zinc Oxide-Eugenol paste retained in gingival mucosa after primary teeth pulpectomy

P. Nivoloni Tannure et al EJPD-2010

FIG. 1 - The slightly short root canal filling in primary incisors and 12 months after pulpectomy

FIG. 2 - Radiographic and clinical exams: ZOE retained in gingival vestibular area.

Periodic clinical and radiographic evaluation should be performed

Calcium Hydroxide

- Herman 1930
- Stimulates dentin formation when contacts pulp tissue
- Used mainly for apexogenesis & apexification
- Resorption ability of the material --alternative for primary teeth root canal filling
- Not used in pulp therapy for primary teeth, due to the frequent occurrence of internal root resorption
- Well tolerated periapically, causing some degree of apical hard tissue deposition
- Mainly serves as an intracanal medicament

Chawla et al 2000	ZOE Vs Calcium hydroxide
	Delayed resorption compared to normal physiologic resorption – ZOE
	High success rate – 86.7% with CaOH
Nadkarni & Damle 2000	Calcium hydroxide & ZOE:
	Faster resorption of overfilled CaOH than ZOE

OTHER OBTURATING MATERIALS IN PRIMARY TEETH

....

KRI PASTE

- Wright K J -84%
- Holan 100%
- Garcia Godoy- 95.6%
- Rifkin 89.5% N

Re

by

Fuks -84% - Kri paste group 65% - ZOE group **Overfills** Kri paste - 79% success ar 41% success with ZOE

MAISTO PASTE

- **REDDY VVS & FERNANDES** Maistos paste -100% - 80% ZOE
- **Bone regeneration**
 - Maistos paste 93%
 - ZOE - 26.7%
 - Mass & Zilberman Modification of Maisto's paste – High ZnO reagent
 - Successful in badly infected molars
- **ENDOFLOS Resorbs extra-radicularly** Discoloration **Eugenol causes irritation** Hydrophillic **Fuks** under filled 83% success overfilled-58%

VITAPEX

Mortazavi & Mesbahi (2004)•Vitapex - 100% •ZOE - 78.5% Physiological root resorption and resorption of vitapex occurred simultaneously

(Trairatvorakul 2008): Vitapex appears to resolve furcation pathology than ZOE 78% vs 48%,

CG Sarigol et alJ Dent Child 2010	Cytotoxic effects of primary tooth root canal filling materials on L929 cell line.
	Kri 1 paste as a root canal filling material is a better option than other medications in primary teeth
Ramar K, Mungara (2010)	Studied was undertaken to evaluate clinically and radiographically the efficacy of three obturating materials – METAPEX, RC FILL and ENDOFLAS for a period of 9 months. ENDOFLAS -95.1%, METAPEX – 90.5% and RC FILL – 84.7%.
Gupta S, Das 2011	Metapex – gradual & almost complete reduction in preoperative signs and symptoms and a faster resorption of overfilled material than ZnOE
Nivedita Rewal et al JISPPD 2014	Comparison of Endoflas and Zinc oxide Eugenol as root canal filling materials in primary dentition
	Endoflas with a success rate of 100% is a much better material compared with zinc oxide eugenol

PROPERTIES	ZOE	Ca[OH] ₂ with Iodoform [VITAPE2		KRI paste
1. Resorbs at the same rate as the tooth.			1	7
2. Harmless	Y	Y		Y
3. Overfill resorbs		Y		Y
4. Antiseptic	Y	Y		Y
5. Easily applied		Y		Y
6. Adheres to the wall	Y	Y		Y
7. Easily removed		Y		Y
8. Radiopaque	Y	Y		Y
9. No discolouration	Y	Y		Y

Omar A Bawazir et al 2007	Apical microlekage of primary teeth root canal filling materials Increased ZOE Decresed vitapex
Chawla et al. 2008 JISPPD	Evaluation of mixture of ZnO ,CaOH,and NaF as a new root canal filling material in primary teeth
	Same rate resorption NaF-effect on permanent tooth
S Asokan et al 2012 J Dent Child	volumetrically analyzed the efficacy of root canal fillings in primary teeth using spiral computed tomography (CT). VOIDS: Vitapex – 95% obturated volume Metapex – 88% ZOE – 84%
SAUMYA NAVIT et al 2016	Antimicrobial Efficacy of Contemporary Obturating Materials used in Primary Teeth- An In-vitro Study Endoflas > ZOE >Calcium hydroxide + Chlorhexidine > Calcium hydroxide + Iodoform +Distilled water ~ Metapex
Alaa O Al-Ostwani Et al JISPPD 2016	A clinical and radiographic study of four different root canal fillings in primary molars ZOP is a promising paste with its natural antibacterial component (propolis).

Table 2: Comparison of studies on calcium hydroxide/iodoform root filling paste						
References	Type of RC filling paste	Number of teeth	Follow-up period	Paste resorption	JISPPD -2014	
				Extraradicular	Intraradicular	
Ramar and Mungara ^[15]	Metapex [®]	30 teeth	9 months	2 teeth	17 teeth	
Ozalp et al. ^[2]	Vitapex®	20 teeth	18 months	7 teeth (resorption of overfilled canal)	6 teeth needed retreatment	
Howley et al. ^[7]	Vitapex [®]	37 teeth	Up to 23 months	10 teeth	All 37 teeth	
Mortazavi and Meshbahi ^[13]	Vitapex®	26 teeth	10–16 months	10 teeth	None	
Nurko and Garcia- Godoy ^[12]	Vitapex [®]	33 teeth	Up to 3-22 months	2 teeth	17 teeth	
Trairatvorakul and Chunlasikiwan ^[11]	Vitapex [®]	27 teeth	Up to 12 months	15 teeth	19 teeth	
Subramaniam <i>et al.</i> ^[17]	Metapex [®]	18 teeth	Up to 18 months	Not mentioned	Not mentioned	
Nakornchai <i>et al.</i> ^[14]	Vitapex [®]	25 teeth	Up to 12 months	N/A	14 teeth – partial resorption	
Mani <i>et al</i> . ^[18]	Pulpdent®	30 teeth	6 months	11 teeth (resorption of overfilled canals)	13 teeth (3 patterns of material resorption noted) From apical portion of canals In vertical generalized pattern From pulp chamber area	
Nadkarni and Damle ^[19]	Paste made from Ca(OH) ₂ powder	35 teeth	Up to 9 months	4 teeth (resorption of overfilled canals) at 3 months only	Not mentioned	

Table 2: Comparison of studies on calcium hydroxide/iodoform root filling paste

RC: Root canal

"At times we have a many options but we have to choose the best among them"

Obturation techniques

Ideal Filling Technique

Should assure complete filling of the canal without overfill and with minimal number of voids

Guelmann et al

Endodontic Pressure syringe

Lentulo-spiral technique

Mechanical syringe

Jiffy tube

Tuberculin syringe

Incremental filling technique

Using reamer

Insulin syringe technique

Disposable injection technique

NaviTip

Methods of obturation

Bidirectional spiral

Pastinject

Using wet cotton, Paper points, Injectable syringes, Plugger

Mahajan et al: Obturation techniques in primary teeth IJMDS 2015

Greenberg (1963)

- This apparatus consists of a syringe barrel, threaded plugger, wrench and threaded needle.
- Flexible needle
- Tortous canals

- Kopel in 1970.
- Hand lentulo spiral and engine driven
- The design and flexibility of the Lentulo spiral allow files to carry the paste uniformly throughout the narrow, curved canals in primary molars.

Mechanical Syringe

Incremental filling technique

- Greenberg (1971)
- Poor in straight and curved canals

- Gould in 1972.
- described a method of placing the material in bulk and pushing it into the canals with endodontic pluggers with rubber stop.

Jiffy tube

Tuberculin syringe

Riffcin (1980)

The standardized mixture of ZOE is back-loaded into the tube.

- Aylord and Johnson in 1987.
- The standardized mixture of ZOE was backloaded into the syringe with a standard 26gauge, 3/8inch needle.

The Reamer Technique

The Insulin Syringe Technique

Priya Nagar (2011)

- A reamer coated with ZOE paste was inserted into the canal with the stopper
- 1st clockwise 2nd vertically up and down 3rd –anticlockwise
- The process was repeated 5 to 7 times for each canal until the canal orifice appeared filled with the paste

- Priya Nagar (2011)
- The material is loaded into the insulin syringe and a stopper is used. The needle is inserted into the canal and kept about 2mm short of apex
- helps avoid incorporation of voids into the canal.

Disposable Injection Technique

NaviTip

Bhandari (2012)

- ZOE can be loaded in a 2-ml syringe with 24-gauge needle along with stopper
- The technique described is simple, economical,

- Guelmann (2004)
- This NaviTip comes in different lengths and a rubber stop may be adjusted to it.
- NaviTip syringe produced the best results in controlling paste extrusion from the apical foramen

UltraCal" XS

Bi-Directional Spiral

Pastinject

- Dr. Barry Musikant [1998]
- This controlled coverage is achieved because the spirals at the coronal end of the instrument spin the material down the shaft towards the apex, while the spirals at the apical end spin the material upward towards the coronal end.

The highest number of voids

Guelmann (2004)

- Pastinject (Micromega) is a specially designed paste carrier with flattened blades, which improves material placement into the root canal.
- Higher number of optimally filled canals and minimal voids

Obturation using injectable syringes

Using wet cotton

The syringe loaded with the obturating material is taken inside the canal and continuously withdrawing the syringe from the canal.

- Hartman and Pruhs
- a small wet cotton pellet
- 🗉 5-8 times.
- Pressure each canal

Amalgam plugger - Nosonwitz(1960) and King (1984)

Paper points by Spedding (1973)

Pastinject seems to be more preferred than other methods as concluded from various studies

Metarpour et al 2013	Lentulo-best in length of obturation NaviTip-best in controlling extrusion, decreased voids Tuberculin-worst in length of obturation	
Grover et al 2013	Pastinject: optimally filled with good success rate Bi-directional:underfilled Pressure syringe:overfilled	
Tan J M E et al 2013	Specially designed paste carrier technique Autoclavable needles Large diameter Decreased extrusion	
Hiremath et al 2016	Endodontic Pressure syringe:95.8% Insulin syringe: 79.2% LA syringe:66.7% Jiffy tube-37.5%	

TWO stages

One- stage- single -visit pulpectomy

Multi visit pulpectomy

INDICATIONS

for Single visit pulpectomy

- Vital primary teeth but with inflammation extending beyond coronal pulp.
- Indicated by hemorrhage from the amputated radicular stump that is dark red, a slowly oozing and uncontrollable.

for multi visit pulpectomy

- (Paterson & Curzon in 1992)
- Indicated where infection, an abscess or chronic sinus exists
- Non-vital primary teeth
- Teeth with necrotic pulp and periapical involvement

Single visit pulpectomy

In multi-visit pulpectomy

Laser Pulpectomy

Safe and Cool cutting With water energy

Water Droplets

Hydrokinetic[®] Energy (Energized H₂O)

Access Preparations

Pulpectomy

Enlargements and Shaping

Obturation & Restoration Placement

Benefits of Waterlase Pulpectomy

- Superior intra-operative and post-operative patient comfort
- Reduced post-operative complications such as inflammation, swelling and pain
- Versatile and effective for root canal preparation
- No vibration and pressure as found with conventional instruments
- More healthy tooth structure is preserved

Success criteria for pulpectomy

- Remains in function without pain or injection until the permanent successor is ready to erupt
- Undergoes physiologic resorption
- Free from fistulous tracts.
- Radiographically, success is judged by the absence of furcation or periradicular lesions and the re-establishment of a normal periodontal ligament.

Follow up – to be done once in 6 months

Postoperative signs that indicate failure

- 🗉 pain
- parulis
- swelling of gingival margin
- pus from gingival sulcus
- patent fistula
- excessive mobility
- sensitivity to percussion
- development of radiolucency at the apex or furcation and
- premature root resorption.

Pulpectomy – a Controversy!

Root Canal Anatomy in Primary Teeth

- After root-length completion, dentin deposition continues in the root canal.
- After root-length completion, dentin deposited in a root canal may change the number, size, and shape of the root canals.
- Often, root canal variations are not visible on clinical radiographic images.
- In anterior teeth, one root canal is usually present, although mandibular incisors occasionally have two.
- In anterior teeth, accessory and lateral canals and apical ramifications are rare.
- Multiple ramifications and tortuous canals
- Proximity of apex to permanent tooth bud
- Physiological resorption buccolingual direction
- Delayed eruption of permanent successor
- Possible deflection
- ankylosis of primary tooth

Starkey 1980

Limitations with pulpectomy for primary molars

- Accessory canals are present so complete pulp extirpation not possible
- Radicular pulp tissue is ribbon-like in shape so challenges with biomechanical preparation of the radicular pulp canal.
- Root is slender and flat mesio-distally increasing risk for root perforation during biomechanical preparation of radicular pulp canal.

Complications associated with pulpectomy

- Internal or external root resorption
- Delayed exfoliation of primary tooth
- Localised discolouration of succedaneous tooth in contact with root filling materials

Conclusion

Successful pulpal treatment of primary teeth depends upon proper case selection, good debridement and choice of root canal obturating material.

Rubberdam, Keeping the pulp chamber constantly flooded with as much irrigating solution ,stable reference points, optimal filling,Introducing temporary medication without affecting the interproximal papillae have to be taken care.

References

- Ingle 5th edition
- Fundamentals of pediatric dentistry RJ.Mathewson
- Pathways of pulp Cohen & Burn
- Kennedy's operative dentistry
- Endodontic practice LI.Grossman
- Stewart scientific foundation
- Endodontics Weine
- Mathewson
- Pinkham Nowak
- Pediat dent 2000,2001 & 2002,2014,2015,2016,2013
- DCNA 2000
- AAPD Guidelines for pulp therapy
- Endodontic journals, JISPPD, EJPD, J Dent for Child, JCPD

- Lele GS, Subba Reddy VV. Comparison of antibacterial efficacy of intracanal medicamer is in multiple visit pulpectomies in primary molars-an in vivo study. J Indian Soc Pedod Present Dent, Jan - Mar 2010, Issue 1, Vol 28, 18-24.
- S.G.Damle and U. M. Nadkarni. Calcium Hydroxide And Zinc Oxide Eugenol As Root Canal Filling Materials In Primary Molars: A Comparative Study. Australian Endodontic Journal. Volume 31, No. 3 December 2005.
- Omar A. Bawazir, Fouad S. Salama. Clinical Evaluation of Root Canal Obturation Methods in Primary Teeth. Pediatric Dentistry – 28:1 2006, 39-47.
- Gupta S, Das G. Clinical and radiographic evaluation of zinc oxide eugenol and metapex in root canal treatment of primary teeth. Journal of Indian Society of Pedodontics and Preventive Dentistry, Jul - Sept 2011, Issue 3, Vol 29, 222-228.
- Ramar K, Mungara. Clinical and radiographic evaluation of pulpectomies using three root canal filling materials: An in-vivo study. J Indian Soc Pedod Prevent Dent, Jan - Mar 2010, Issue 1, Vol 28, 25-29.
- Trairatvorakul C, Chunlasikaiwan . Evidence-Based Review of Clinical Studies on Pulpectomy. JOE — Volume 35, Number 8, August 2009
- Moti Moskovitz, Dana Yahav, Nili Tickotsky & Gideon Holan. Long-term follow up of root canal treated primary molars. International Journal of Paediatric Dentistry 2010; 20: 207–213
- M. Hulsmann & W. Hahn. Complications during root canal irrigation literature review and case reports. International Endodontic Journal, 33, 186–193, 2000.
- Neena IE, Ananthraj A, Praveen P, Karthik V, Rani P. Comparison of digital radiography and apex locator with the conventional method in root length determination of primary teeth. J Ind Soc Pedod Prev Dent Oct - Dec 2011;4(29): 300-304

Thank You